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Abstract

We study the problem of scheduling classes in four-year universi-
ties, and also four-year high schools in the United States. This prob-
lem is often formalized as the University Course Scheduling Problem
(UCSP). There are many research papers on the UCSP, some of which
use integer programming (IP) models, e.g., Daskalaki, Birbas, and
Housos (2004). In U.S. universities, student preferences for courses
are often not explicitly taken into account when constructing class
schedules. A 2016 survey of over 700 undergraduate colleges and uni-
versities by the American Association of Collegiate Registrars and Ad-
missions Officers (AACRAO) notes that faculty availability and time
block popularity were among the most popular factors driving the
overall course scheduling process, while “data collected from student
plans of study” was the least-influential factor. We compare course
scheduling outcomes when student preferences are explicitly taken into
account while constructing course schedules and when student pref-
erences are ignored. The quality of course schedules is measured by
the number of students getting their first and second-choice electives
across three scenarios. In the first, classes are assigned to periods, and
teachers to classes while maximizing teacher preferences for teaching
times. Students are then assigned to courses in a first-come-first-serve
manner. In the second scenario, after course scheduling is completed
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as in the first scenario, students are assigned to courses while maxi-
mizing student preferences for electives. In the third scenario, courses
are scheduled so as to maximize student preferences while ignoring
teacher preferences. For each scenario, we define an IP model and
solve it with CPLEX. We show, using a simplified model of course
scheduling constraints, that if student preferences are taken into ac-
count, then a course schedule can be constructed that gives students
many more of their preferred courses than if the course schedules are
constructed without taking preferences into account. The increase is
about 20% in a simulated medium-sized department with roughly 20
teachers, 32 courses, and 150 students across four years.

1 Introduction

We study the problem of scheduling classes in four-year universities, and also
four year high schools in the United States. This problem is often formal-
ized as the University Course Scheduling Problem (UCSP) or the University
Course Timetabling Problem (UCTP). University course scheduling has been
studied a lot and there are many research papers on this topic, for example,
Daskalaki, Birbas, and Housos [8], Hertz and Robert [10], and Algethami and
Laesanklang [1]. The first and third papers above give integer programming
models for this problem and use standard solvers such as IBM-CPLEX [11] to
solve the models. This problem is also called the Course Timetabling Prob-
lem; see Boland et. al. [3]. The UCSP is considered to be a computationally
hard problem, as variants of it include the Timetable Design problem which
is known to be NP-hard [9]. However, some variants are not hard to solve
[13, 5]. For practical issues in university course scheduling and best prac-
tices, see the survey [2] by Hanover Research. Another article that surveys
common approaches used in universities is [6]. Though the UCSP has been
widely studied, it has been recognized (Pillay [12]) that scheduling in four
year high schools is less well studied. Pillay [12] surveys research on school
timetabling/scheduling.

In U.S. universities, student preferences for courses are often not explic-
itly taken into account when constructing class schedules. See for example
the FAQ on course scheduling at Rutgers University [7]. Instead, univer-
sity departments look at historical course enrollments to understand student
interest in courses, and also take into account faculty preferences and room
requirements and availabilities while scheduling courses. A Hanover Research
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survey [2] states that the American Association of Collegiate Registrars and
Admissions Officers (AACRAO) surveyed over 700 undergraduate colleges
and universities. According to Hanover Research, the AACRAO

found that the most popular factors in the overall scheduling
process included faculty availability (90.7 percent), time block
popularity (76.5 percent), and courses scheduled at the same
time from year to year (71.4 percent) (Figure 1.1).8 Notably, the
least-influential factor in scheduling for undergraduate students
is “driven by data collected from student plans of study,” sug-
gesting that relatively few institutions consider student data and
plans of study when making course scheduling decisions.

In this work, we study course scheduling when student preferences are
explicitly taken into account while constructing course schedules. We note
that this is the practice in the Croton-Harmon High School in Westchester
County, NY. In this school, high school students give a plan of study (list
of courses) at the end of every year. For highly desired electives, students
list them in order of preference. The school attempts to satisfy these plans
of study and give students their desired courses. From among the ordered
list of preferred electives, the school attempts to assign the most preferred
elective to a student, and if not possible, the second most preferred elective
and so on.

We will compare course schedules where student preferences for electives
are taken into account and those where they are not. We make a number
of simplifying assumptions regarding room availability and requirements and
faculty constraints. We believe our simplified model still captures many
constraints used in universities and four-year U.S. high schools. We show,
using our simplified model, that if student preferences are taken into account,
then a course schedule can be constructed that gives students many more of
their preferred courses than if the course schedules are constructed without
taking preferences into account.

We define three optimization models. The first model assigns classes
to periods, and teachers to classes in a way that scheduling conflicts are
taken into account while also maximizing teacher preferences for times at
which they teach. The second assigns students to already scheduled classes
in such a way that student preferences for classes are maximized. If one
runs the second model using the solution of the first, then one obtains a
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complete scheduling solution, while maximizing teacher preferences. How-
ever, in many universities it is common for students to come forward with
a list of electives , sorted by preference order, and then classes are given
in a first-come first-serve manner. We also test an algorithm to implement
such a first-come first-serve assignment. Finally, we write a combined model
which creates a complete schedule, along with teacher-course and student-
course assignments. The objective function is the maximization of student
preferences.

We compare the student preference scores in the three scenarios:

1. Teacher preferences are maximized while scheduling classes, and stu-
dent preferences are completely ignored. After classes have been sched-
uled, students are assigned to courses on a first-come first-serve basis.
(model 1 + algorithm)

2. Teacher preferences are maximized while scheduling classes, and stu-
dent preferences are completely ignored. After classes have been sched-
uled, an optimal allocation of students to courses is computed. (model
1, then model 2)

3. A combined model is solved to schedule classes, assign teachers and
students to courses, while maximizing student preferences and ignoring
teacher preferences.

We will demonstrate that student preference scores increase from the first
to the third scenario (as would be expected). Our main observation is that
this increase can be very significant.

2 Integer Programming Models

We will next explain the equations for the three models that we create. We
first describe the constraints we incorporate in these models, and then the
assumptions behind them, and then the simplifications we make over common
practice in order to get a common model for high school and university
settings.

In US universities it is common to have courses scheduled either on Mon-
day, Wednesday, and Friday, or on Tuesday and Thursday. We assume that
all days are identical in our models which is closer to how US high schools
operate. Mandatory classes are often split into multiple sections, however
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Symbol Description
G set of all grades
S set of all students
C set of all courses
T set of all teachers
D set of all days
P set of all periods in a day
i letter used to denote student index
j letter used to denote course index
k letter used to denote teacher index
g letter used to denote grade index
Ck set of courses taught by teacher k
Tj set of teachers that can teach course j
M set of all mandatory courses
Mg set of mandatory courses for grade g
E set of all elective courses
Eg set of elective courses for grade g
mC maximum number of courses per teacher
mSC maximum number of courses per student
Crj number of credits for course j

Table 1: Notation used to describe optimization models

we assume there is only one section and all students in a grade attend the
same mandatory class during the same period in the same room. We do not
take into account room assignment considerations, but we assume there is
an enrollment capacity for each course. We assume that teachers teach up
to 2 courses which is a common workload in US universities but not in US
high schools. We assume that students only have the option to take elective
courses for their year/grade. Mandatory courses for a grade cannot clash
and electives cannot clash with mandatory classes but can clash with each
other. Teachers cannot be assigned conflicting courses. Multiple periods of
the same course cannot be assigned in a day. All courses across the four years
are of one type, and teachers can teach only one type, for example, a teacher
could teach English for all grades, but cannot teach History. We introduce
some notation needed for our models in Table 1.
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2.1 Model 1

We have a binary variable uk,j which is 1 if and only if teacher k is assigned
to course j. We have a binary variable xj,l,m which is 1 if and only if course
j is assigned to period m on day l. We have a binary variable vk,j,l,m which
indicates if teacher k has to teach course j on period m on day l.

max
∑
k∈T

∑
j∈C

∑
l∈D

∑
m∈P

tScore(k,m)vk,j,l,m (1)

S.t.
∑
j∈Ck

uk,j ≤ mC ∀k, (2)

∑
k∈Tj

uk,j = 1 ∀j, (3)

uk,j1 + uk,j2 + xj1,l,m + xj2,l,m ≤ 3

∀k, j1 6= j2 ∈ Ck, l ∈ D,m ∈ P, (4)

vk,j,l,m − uk,j ≤ 0 ∀k, j ∈ Ck, l ∈ D,m ∈ P, (5)

vk,j,l,m − xj,l,m ≤ 0 ∀k, j ∈ Ck, l ∈ D,m ∈ P, (6)∑
m∈P

xj,l,m ≤ 1 ∀j ∈ C, l ∈ D, (7)

xj1,l,m + xj2,l,m ≤ 1 ∀g ∈ G, j1 6= j2 ∈Mg, l ∈ D,m ∈ P, (8)∑
l∈D

∑
m∈P

xj,l,m = Crj ∀j ∈ C, (9)

xj,l,m, vk,j,l,m, uk,j ∈ {0, 1}. (10)

The first constraint gives an upper bound on number of courses taught by
each teacher. The second constraint enforces the condition that each course
must be taught by one teacher. The third constraint says that if a teacher
is assigned to courses j1 and j2, the courses cannot be assigned to the same
period. The next two constraints enforce the condition that variable v is 1 if
a teacher is assigned to a course and the course is assigned to a time period.
In other words, it indicates if a teacher is assigned to a time period. The next
constraint does not allow a course to be assigned to two or more periods in
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the same day. The next constraint says that at most one mandatory course
for a grade can be assigned in a period. The final constraint says that each
course must be assigned to as many periods as the number of credits.

2.2 Model 2

The set of all available courses for student i is SCi. The set of elective courses
requested by student i is Ei. The set of all courses assigned to day l and
period p is ACl,p. The capacity of a course j is CAPj. We have a binary
variable yi,j which is 1 if and only if student i is assigned to course j.

max
∑
i∈S

∑
j∈Ei

sScore(i, j)yi,j (11)

Subject to
∑
j∈SCi

yi,j ≤ mSC ∀i ∈ S, (12)

∑
j∈ACl,p

yi,j ≤ 1 ∀i ∈ S, l ∈ D,m ∈ P, (13)

∑
j∈Mg

yi,j = |Mg| for all students i in grade g, (14)

∑
i∈S

yi,j ≤ CAPj ∀j ∈ C, (15)

yi,j ∈ {0, 1}. (16)

The first constraint limits the number of courses each student can take.
The second constraint says that a student cannot be assigned to two or
more courses during the same period. The third constraint ensures that each
student takes all mandatory courses for their grade. The next constraint
says that the number of students assigned to each course cannot exceed that
course’s capacity.

2.3 Combined Model

In the combined model we include all constraints from Model 1 and Model 2
apart from constraint 13 which is replaced my constraint 17. The objective
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can be a linear combination of objectives for Model 1 and 2, though we
mostly use the objective from Model 2.

yi,j1 + yi,j2 + xj1,l,m + xj2,l,m ≤ 3 ∀i ∈ S, j1 6= j2 ∈ C, l ∈ D,m ∈ P (17)

3 Experiments

3.1 Data

In this problem we assume that there are 5 days in a week, there are 7 equal
length periods in a day, the number of credits for a course is equal to the
number of periods taught per week, and we assume that the schedule repeats
weekly so the scheduling problem is effectively solved for a 5 day period. We
randomly generated data sets of two different sizes.

In the first group of data sets we have between 100 to 150 students, 32
courses (8 per grade, each grade with 4 mandatory and 4 electives), elective
courses have a capacity between 5 and 20 students, students can take up to 3
electives, there are 16 to 24 teachers, each teacher teaches at most 2 courses.

In the second group of data sets we have between 400 to 600 students, 40
courses (10 per grade, each grade with 3 mandatory and 7 electives), elective
courses have a capacity between 15 and 30 students, students can take up
to 4 electives, there are 20 to 30 teachers, each teacher teaches at most 2
courses.

Each student has a list of electives sorted by preference order. These
preferences are encoded by scores with the most preferred elective getting a
score of 4, the second most preferred elective gets a score of 3, the third gets
a score of 2, and the remaining electives get a score of 1. When students are
assigned to courses, the combined student preference score, is calculated by
adding up the scores of the electives each student is assigned to.

The teachers have a preference order for the periods in a day in which
they would like to teach. The teachers have 1 of 3 preference orders for
the periods in which they wish to teach. The first preference order ranks
periods in decreasing order from morning to afternoon. The second order is
the reverse of the first preference (last period is most preferred and the first
period is least preferred). The last preference order gives a higher preference
to the middle of the day. These preference orders are encoded by giving
a score of 10 to the most preferred period, 9 to the second most preferred

8



period and so on. The combined teacher preference score is calculated by
adding up the scores of the periods for each teacher.

We create 5 randomly generated instances of the data sets where we chose
uniformly between possible choices. For example, in the first group of data
sets, the number of students can be any number between 100 and 150 with
equal probability. Each student has a list of elective courses, sorted in order
of preference.

3.2 Computational Results

We ran model 1 with a time limit of 5 minutes and did not impose a time
limit for models 2 and 3. Model 1 seems to be difficult to solve to optimality
even for the relatively small scheduling problem in our setting. Even after 5
minutes, the integrality gap is on the order of 5-6%.

In Table 2 we give our results on the 5 smaller data sets. The results
for the first data set are given in column 2, and for the remaining data sets
in subsequent columns. We group the results by scenario type. For each
scenario, we first give the combined student preference score, followed by the
number of students who got their first choice elective, and then the second
choice elective and so on.

In scenario 1, students choose courses by a first come first serve policy
(the first arriving student gets all his/her courses in preference order assum-
ing they don’t conflict, subsequent students get courses if there is capacity).
Recall that in scenario 2, students are assigned to courses to maximize stu-
dent preference score after teachers and courses have been scheduled, where
as in scenario 3, course scheduling is done along with student assignment
while maximizing student preference scores. We see that for all random in-
stances, the scenario 1 student preference score is less than the score for
scenario 2 and the score for scenario 2 is less that the score for scenario 3.

The first observation suggests that allocating students via an optimization
formulation can get a better combined preference score than a first come first
serve policy. As an example, consider data set 3, where the overall score is
higher in scenario 2 than in scenario 1 and many more students get their
first choice course (the first come first serve policy will tend to reward early
students with all their course choices barring conflicts while penalizing later
students). The second observation suggests that taking student preferences
into account while scheduling courses yields better student preference scores
than if courses are scheduled first. Note that for data set 4, the difference

9



Scenario 1 Score 499 442 527 554 483
Choice 1: 84 99 84 100 92
Choice 2: 40 19 49 41 25
Choice 3: 20 7 20 14 17
Choice 4: 3 3 4 3 6
Scenario 2 Score 564 475 600 568 506
Choice 1: 117 96 134 106 98
Choice 2: 27 28 19 40 29
Choice 3: 7 3 3 12 12
Choice 4: 1 1 1 0 3
Scenario 3 Score 574 612 601 686 598
Choice 1: 122 102 135 106 98
Choice 2: 24 50 18 65 57
Choice 3: 5 23 3 31 17
Choice 4: 4 8 1 5 1

Table 2: Results of experiment 1

in scores between scenario 2 and 3 is very significant. In this data set, even
though the same number of students get their most preferred course in both
scenarios, many more students get their second most preferred course in
scenario 3 (65 vs 40).

In the next table, we give our results for the larger data set. We note that
the differences between scenario 2 and 3 are not as stark as in our previous
group of data sets. However, scenario 2 scores are consistently much higher
than scenario 1 scores.

4 Conclusions

Even with our simplified model, it is clear that taking student preferences
into account while scheduling courses can yield a much better result for the
students, depending on the data. In other words, if scheduling was “driven
by data collected from student plans of study,” as suggested in the Hanover
Research quote from page 2, the outcome for students would be much better
than current practice. Furthermore, even after course schedules have been
created, one can get much better assignments of courses to students if one
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Scenario 1 Score 1622 1670 1640 1785 1781
Choice 1: 239 288 259 289 264
Choice 2: 156 131 147 153 164
Choice 3: 86 54 67 68 98
Choice 4: 26 17 29 34 37
Scenario 2 Score 1894 1903 1996 2096 2148
Choice 1: 384 428 490 468 461
Choice 2: 107 63 12 72 100
Choice 3: 18 1 0 4 2
Choice 4: 1 0 0 0 0
Scenario 3 Score 1917 1906 1996 2098 2152
Choice 1: 389 430 490 468 464
Choice 2: 113 62 12 74 98
Choice 3: 11 0 0 2 1
Choice 4: 0 0 0 0 0

Table 3: Results of experiment 2

solves a course assignment problem for students instead of assigning them in
a first come first serve manner.
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